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PREFACE

Basic to most image understanding tasks is the segmenta-

tion of objects from their background. In simple situations

the objects to be extracted may be "blobs". A blob can be

characterized as a compact region lighter (or darker) than its

background surrounded by a smoothly curved edge. In principle,

a blob can be extracted by thresholding the image at an appro-

priate level, or its bounds can be defined by an edge detector.

However, because of noise and blur, pure object/backaround discri-

mination can rarely be achieved in this way. This thesis poses

a fuzzy classification scheme for blob detection. It incor-

porates ideas used in non-probabilistic methods making use of

edge/border coincidence, and implements these ideas in the form

of a probabilistic relaxation process.

4In Chapter I probabilistic relaxation is discussed and blob

detection using edge/border coincidence is described.

In Chapter II the behavior of the edge process and the gray

level process are examined, first when operating separately and

then when interacting in a joint relaxation process.

Chapter III discusses several extensions to the blob ex-

traction processes. These include a pyramid structure for
multilevel relaxation, the use of curvature information as a

basis for the initial estimation of "inside" and "outside" class

probabilities, and a scheme for computing compatibility coef-

ficients for detecting objects in a time sequence of one-

dimensional images.



CHAPTER I

BACKGROUND

1.1 Probabilistic Relaxation

A primary step in the analysis of an image is the discri-

mination or classification of the parts of the image. A low

level symbolic description of the image based on local evidence

(i.e., gray level, gradient magnitude, curvature) can be

built. However, local evidence may be misleading, causing

ambiguities in the classification. Ambiguities arise from the

sensitivity of local evidence to noise, or multiple responses

to the same gray level pattern, as in computing slope infor-

mation. The ambiguity problem is especially severe if the

classification is done in parallel with each point being clas-

sified without reference to any classification decisions that

may have already been made at other points. To disambiguate the

classification, an iterative process which makes use of the

relationships among the classes to reduce or eliminate the

ambiguity is employed. This computational process is called

"relaxation labeling" [1].

The relaxation labeling method uses probabilistic classi-

fication rather than making firm classification decisions

immediately. Classification probabilities at a given iteration

are allowed to depend on decisions made at the previous iteration.
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2

The probability updating at a given iteration is done in

parallel over the entire image.

To convey the general idea of the method, a simplified

overview is given in (2]. We initially assign to each point

P the probability pi that it belongs to each of its possible

classes. We then examine the probabilities at neighboring

points, increasing pi if supporting evidence is found for it

(i.e., if there exist high probabilities that the neighbors
$!

of P have compatible classifications), or decrease it if con-

tradictory evidence is found (i.e., there exist high probabi-

lities of incompatible classification at P's neighbors). The

updating is done in parallel for every P and every pi, and the

process can be iterated as many times as desired.

Two formal models of the process have been formulated and

applied (3][4]. We now briefly describe the models. Let

A = {al,...,an} be the set of objects (possibly single points)

in a scene, each of which belongs to one of the classes of the

set A = {Xl1**,Xm}. With each ai we associate a probability

vector (P l,...,Pim), where Pik is an estimate of the probability

that ai belongs to the class Xk' where E p .() = 1, and
1 X=A 1

0 9 p(i) ' 1 for all a. E A. This estimate is based on some

conventional analvsis of ai . For example, the initial esti-

mate of the edgeness of the point ai may be proportional to

the magnitude of the gradient of the image at ai . For each

pair of neighboring objects ai,a j (given a specified neighbor
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relation) and each pair of classes XhXk, there is a measure

of compatibility between object ai belonging to class Xh and

object a. belonging to class Xk* Compatibilities are given

by the function r ij (X,X') where -1 ' r . +1 and

a) if X at a. is compatible with X' at aj, then

rii (,A') > 0;

b) if X at a. is incompatible with X' at aj; then

r ij (X,X') < 0;

c) if neither labeling is constrained by the other ("don't

care" situation), then r ij(x,x') = 0;

d) the magnitude of r. represents the strength of the

compatibility.

Compatibility coefficients can be computed as correlation

functions, by a priori evaluation of the ways in which the

classes can interact, or based on nutual information of the

labels at neighboring points (i.e., if two labels have a high

positive correlation, it is expected that they will have a

high mutual information, and vice versa). The pairwise compati-

bilities among the labels at adjacent points computed by mutual

information are estimated using ratios of probabilities given by

Pij(X,X')

p(X)p(X')

where i,j specifies a neighborhood direction and X,X' range

over the label set. For a detailed discussion of computing

compatibility coefficients by mutual information see [5].

.1'
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The new estimate of the probability of X at a. at the
1

(k+l)st iteration is a function of both the previous estimate
k

for that probability, pi(A), and the contribution from the
I

probability distributions on the neighboring label sets,

kqi ) VXEA, given by [3]

Pi (X) [ 1q X
p k+l} M( =_)

i ~ pt p(a) [l+qk (a)]
a 1

where

ki()L) E Er 7 . (X,a)pj(a)
j a

This updating scheme is useful when compatibilities are

expressed as positive and negative coefficients. When com-

patibilities are computed by mutual information a non-negative

coefficient scale results, where 0 represents high incompati-

bility and high values represent high compatibilities. The

second model works with these compatibilities. The new estimate

of the probability of X at ai at the (k+l)st iteration is

* given by [4]

k k

k+l) i = XrPj (X a)p U (a)

SI EE.UxaPM )

When the a's at a. are highly compatible with pi(A) the sum

will be high, low otherwise, and pi(X) will increase relative

to other p's.

Both iteration schemes yield comparable results. A study

of the convergence properties of relaxation processes is found

i~~~~-m '0 .............. A
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in [6] [7]. Relaxation methods have been used in breaking

substitution ciphers [8], handwriting segmentation [9][19],

line and curve enhancement [1] [10] [11] and edge enhancement

[121113], among other applications.

II

II
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1.2 Blob Detection

Segmentation of objects from their background is basic to

many image understanding tasks. This paper deals with the

relatively simple case in which the object is a "blob". A

blob can be characterized as a compact region lighter (or

darker) than its background surrounded by a smoothly curved

edge. Not all images conform to this rudimentary model;

for example, consider images of clouds whose regions lack well

defined outlines, or images that consist of subparts with

differing textures. However, the model is applicable to many

imaging tasks including thermal imagery analysis, chromosome

classification, and industrial automation.

In principle, blobs can be extracted by thresholding the

image at an appropriate level. However, if the image is noisy,

thresholding will produce noisy results which may not be cleaned

up in postprocessing. Thresholding may extract regions that

are not bounded by edges but are smooth continuations of the

background if the gray level fluctuations in the background

cross the threshold level. Edge detection is also sometimes

useful in object extraction. However, the edge detector may

respond in the interior of the object or background as a result of

noise or may fail to respond strongly on the object/background

border because of blur.

Milgram [14](15] has investigated the use of edge/border

coincidence as a method for object detection using the "Superslice"

I.
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algorithm. The basic concept is the matching of border points

of connected components with corresponding edge values. In

this approach, an edge detector is run over the image and the

response thinned to an "edge map". The image is then thresholded

and connected components of above-threshold points are extracted

(see Rosenfeld and Kak [16] for a discussion of connected

components and edge detectors). The components are accepted

as objects or rejected as noise based on the coincidence of

the edge map with the region boundary. This process is carried

out at various thresholds and at each threshold the surviving

regions are compared with the survivors of earlier thresholds.

Only those regions that best match the edge map are used to

describe the actual objects in the image.

Nakagawa used edge/border coincidence as an aid in edge

extraction [17]. He was able to reduce the noisiness in the

edge detector response by selecting those edge points that lie

on region borders in the thresholded image. The selected edge

points were linked into continuous curves by following the

region borders.

Parikh experimented with the use of border edge strength

values to determine a threshold for cloud-type objects [18].

Edge strength was defined to be the sum of the edge values

for all border points of a given connected component divided

by the number of border points. The border edge strength

.1i
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feature failed to segment the cloud-type objects because of the

ill-defined nature of the borders.

Relaxation applied to the detection of edges was success-

fully investigated by Schachter et al. [12]. In their

approach, the gradient magnitude was computed by

MAG =V(A F) 2 + (A F) 2

x y

where F is the image and AxF, A F are the x,y components ofy
the gradient respectively. The edge direction was given by

A F
6 = tan-l )

The probability of an edge at a point (x,y) was defined by

p(x,y) = MAG(x,y)
max MAG(u,v)
U,v

where the max was taken over the entire image. P(x,y) =

1 - P(x,y) defined the no-edge probability. Edge/edge com-

patibility coefficients were computed based on smoothness of

slope continuation for edge/edge; edge/no edge and no edge/

no edge interactions were also defined. In brief, no edge

reinforces no edge; edge reinforces edge if they smoothly

continue one another; and edge reinforces no edge if they are

alongside one another.

To apply relaxation to thresholding [21], "light" and "dark"

probabilities are initially assigned to image points based on

tbir gray levels. The probabilities are iteratively adjusted

at each point based on the probabilities at the neighboring
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points, i.e., light reinforces light and dark reinforces

dark. This has the effect of shifting the probabilities ini-

tially assigned to noise points so as to make them more con-

sistent with their surroundings. After a number of iterations,

light probabilities should become uniformly high, and vice

versa, producing a bimodal histogram with peaks at opposite

ends of the gray scale, making threshold selection easier and

resulting in a non-noisy binary image. However, the process

still may extract regions not bounded by edges.

This thesis uses the ideas of relaxation and the ideas of

edge/border coincidence in a probabilistic segmentation scheme

for blob detection. Superslice, a non-probabilistic scheme,

made two independent decisions based on gray level (thresholding)

and edge strength (selection of maxima), then checked for coin-

cidence to determine if an object was detected. The joint

relaxation process described in this paper, on the other hand,

never makes decisions. It estimates the probabilities based

on gray levels and edge strengths, and then iteratively adjusts

these probabilities so that both types of information are able

to interact. This process thus incorporates the principle of

convergent evidence in a deferred cormmitment scheme.



CHAPTER II

BLOB DETECTION

In this chapter we examine the edge and gray level pro-

cesses operating separately, and then the joint process in

which they are both combined.

2.1 Edge Relaxation

We compute the initial edge probabilities as follows.

Let ei(i = 1,...,8) be a measure of the gray level difference

at point P in direction 45i*, where ei is computed by apply-

ing these masks, first proposed by Prewitt, at every picture

point:

-101 0 11 1 1 1 1 1 0
-1 P 1 -1 P 1 0 P 0 1 P -1
-1 0 1 -1 -1 0 -1 -1 -1 0 -1 -1

We take the absolute value as the edge magnitude and let the

sign indicate the edge orientation (i.e., a 90* edge is a

negative 2700 edge). The operator has the effect of thickening

edges, i.e., producing edge responses on the leading and trail-

ing sides of the object border. To obtain usable edge infor-

mation, the output must be thinned by suppression of non-maxima

of the edge magnitude in the direction across the edge at each

point.

Figure 1 shows the FLIR image of a tank displayed as gray

levels. Figure 2a shows the edge detector output with non-

maximal responses suppressed. Th4 s illustrates the problem of

10
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the edge detector responding to varying intensity patterns

in the background. A histogram of the edge strengths is

shown in Figure 2b.*

Let E be the largest e value at any point of the image,

and let ep be the largest value at point P. pe = ep/E is

taken to be an estimate of the edge probability at P and

= l as an estimate of the no edge probability. Further,
8

p. = (e./s)pe' where s = E ei, is taken as an estimate of the

i=l 8
probability of an edge in direction 45i* at P. Thus, Z p1 =

i=l

and pe + pn = 1.0. Figure 3a shows the initial edge classi-

fications with pixels having maximum edge probability (regard-

less of direction) rescaled as gray levels between 0 and 63,

and pixels having maximum no edge probabilities displayed as

black.

The pairwise compatibilities among pl,... ,p8,Pn at adja-

cent points are estimated using mutual information [5]. A few of

the coefficients are shown in Figure 4, showing that the rela-

tive strengths of the coefficients support the intuitive con-

straints of no edge reinforcing no edge, edge reinforcing edge

if they smoothly continue one another, and edge reinforcing

no edge (and vice versa) if they are alongside one another.

This has the effect of strengthening the appropriate edge

probabilities at points that lie along smooth edges, and

* The scale in all histogram pictures indicates the number
of pixels per displayed dot.
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strengthening the no edge probability elsewhere. These

coefficients are used in the relaxation process of [4].

FiGure 3(b-i) shows eight iterations of the edge relax-

ation process applied to Figure 3a. Figure 5(a-i) are the

histograms of the respective iterations. As the relaxation

process iterates the edge responses clustered at the lower

end of the scale in Figure 2b migrate in two directions.

Those points which have low edge support have increased no

edge probabilities and become zero while those points receiving

support have increased edge probabilities and move toward the

higher values. The no edge points show up as a spike at gray

level zero. The blob edge becomes significantly enhanced with

the blob being completely defined after four iterations. As

the process continues some of the edges in the background

begin to come out; however, the improvement over Figure 2a

is obvious.

... d. .. . . . _L: .. .- - -- , T~
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2.2 Light/dark Relaxation

The light/dark process was initially designed as an

automated thresholding process wherein the gray levels would

decide whether they belonged to the light class or dark class.

The result should be a bimodal histogram, which makes threshold

selection obvious. (See [21] for a discussion of thresholding

using light/dark relaxation.) In the image domain with which

we are experimenting, involving homogeneous objects on a con-

trasting background, the light class can be equated with blob

interior and the dark class with blob exterior. As it relates

to edge/border coincidence, this process has the joint role

of supplying the border information and classifying the object

interior. The border is defined by interior points on the

light sides of edges. However, we first examine the behavior

of the process without the edge interaction.

We compute the initial light/dark probabilities as

follows. Let g be the gray level of point P, and let b,w be

the lowest and highest gray levels in the image, so that

b s g sw for all P. -b is taken as the estimate of
W w-b

the probability that P is white, and Pb - w-b as the probability' b w-b

that P is black. Figure 6a shows :he initial light/dark clas-

sifications of Figure 1 redisplayed as gray levels where

g = b+Pw (w-b) = w-pb(w-b). Because the initial probabilities

are based on gray levels and then redisplayed as gray levels,

Figure 6a is a copy of the original image.
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The compatibilities between the black and white classes

at adjacent points are estimated using ratios of average

probabilities, as in the previous section. Figure 7 shows

a few of these compatibilities; we see that interior reinforces

interior, exterior reinforces exterior, and adjacent interior/

exterior classes are contradictory.

Figure 6(b-i) shows eight iterations of the relaxation

process applied to Figure 6a. Displayed in this figure is

the strength of each point's light classification. This is

interpreted as the probability that each point belongs to the

interior class. As the process iterates the blob interior

grows. After three iterations those ambiguously classed points

on the blurred edge become classified as interior. However,

with no inhibitory process to temper this growth, background

points neighboring the blob interior begin to accept the in-

terior support and become classified as interior themselves.

Some areas in the background which do not look blob-like

(lacking smoothly curving edges) have also been somewhat en-

hanced. This is due to their relatively high gray level and

the fact that supporting evidence is based only on gray level.

Figure 8(a-i) show the histograms of the corresponding

iterations shown in Figure 6(a-i). The process produces a

discrimination between the blob and the background evident

by the widening valley between the exterior class, peaked at

.1i
.1.. .
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the low end of the histogram around gray level seven, and the

interior class peak gaining strength around gray level 43. A

difference between the objective of this process and the

thresholding process is that this produces no segmentation

since no actual thresholding has been done.

Ma

I9

*1
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2.3 Joint Relaxation

We now allow both information sources to interact in a

multi-process relaxation scheme. Given the two initial sets

of probabilities for each point, compatibility coefficients

can be defined between Pb' Pw' Pl''' ''P8' Pn in the same

manner as in the previous sections. The edge/border inter-

action is embodied in the inter-process compatibilities where

edge reinforces light if it is on the light side of the edge

(and vice veisa), edge reinforces dark if it is on the dark

side of the edge (and vice versa), and the no edge/(light,dark)

interations are "no information" situations. The intra-process

compatibilities preserve the same reinforcement relations as

previously detailed. Figure 9 is a sampling of these coeffi-

cients.

We compute adjusted probabilities using the relaxation

formula by allowing the classes to interact as before but nor-

malizing the two sets separately. At each iteration the up-

dated light/dark estimates are normalized by

Pt = i
PL + pw|

where . = b or w and pi is the updated unnormalized estimate

of t, and the updated edge estimates by

Pk pi .. +

wherek= (l,...,8,n).

:I'
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Figure lO(a-i) shows the results of the initial classi-

fication and eight iterations of the joint relaxation process

applied to Figures 3a and 6a. The figure consists of a pair

of images for each iteration. In one pw is displayed and in

the other Pe is displayed. Allowing both sources of infor-

mation to interact has sped up the blob edge definition.

needed to define the blob completely. Operating jointly, only

three iterations are needed. The edges which come out of the

background in the single process are greatly inhibited in the

* joint process. A comparison of Figures 2a, 3i and l~i (edge)

shows a dramatic improvement. One shortcoming of the light/dark

process operating alone was the blob's growth into the back-

* ground. As a result of interacting with the edge information

this expansion is contained, yet not entirely inhibited outside

of the defined edge. The containment is most observable in

the latter iterations of the process. The emergence of white

patches from the background not bounded by edges is unimproved

by the increased information. This is because, as can be seen

from the edge process alone, there are edges in the background

giving support to the light class on the light side of the

edge, and no-edge probabilities have no inhibitory effect on

either the light or dark probabilities.

The histograms of Figure lO(a-i) are shown in Figure ll(a-i).

The effect of the joint process on the light/dark classifications
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can be analytically supported by a comparison of the light/

dark process histograms of this figure with the histograms

of the light/dark process operating alone (Figure 8). The

light/dark peaks are separated by a much sharper valley in

the joint process, meaning that fewer points are ambiguously

classified (relatively equal light/dark probabilities) and thus

there is greater discrimination between the object and the

background. The effect of the joint process on the edge/no

edge classifications can also be analyzed in the light of a

comparison of the edge process histograms of this figure and

the histograms of the edge process operating alone (Figure 5).

Although the strongest edge in the joint process is weaker

than in the single process, the bulk of the edges are stronger,

and the ambiguously classified edges, appearing around the

low middle gray levels in the single process histogram, have

been eliminated. This reflects the inhibition of edges in the

background as seen in the joint gray level display.

A modification to the joint relaxation process was tried

in order to deal with the problem of the blob's growth into

the background. Pb and Pw are initialized based on a "borderness"

measure, where pw is initially high only adjacent to the light

sides of edges and low elsewhere. (The idea that the human

visual system "colors in" regions based on gray levels adjacent

to their edges is well knownto perception psychologists [221.)
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Borderness values are computed by adding the difference value

ei (the result of applying each mask) to the points marked

by l's if ei > 0, or the absolute value of ei to the points

marked by -l's if ei < 0, in each of the masks shown in the

previous section. The result is a set of "borderness" values

which are high on the light sides of edges and low elsewhere.

Pb and Pw are initialized based on a combination of the

gray level and the borderness values at each point. Let B

be the maximum borderness value in the image. Let 8 be the

borderness value at point P, and let P= /B. Let P*
B w

apw + (l-a)p,' where 0 • a & 1 and pw is computed as before,

and let p* 1-p*

With the edge initialization, compatibility coefficients

and the relaxation process carried out as in the joint process,

Figure 12(a-c) show the results of the initial classification

and eight iterations with a =.5. This is an obvious improve-

ment over the results in Figure 10. The object definition is

sharper and the emergence of light patches from the background

has been effectively inhibited. Improvement has also been made

in the edge classifications. The histograms of this process,

Figure 13(a-i), support what is observable in the gray level

display.



CHAPTER III

EXTENSIONS

This chapter discusses several extensions of the blob

extraction process.

3.1 Pyramid Structure

The one-level relaxation structures of the previous

chapter can be extended to a multi-level hierarchy where

each successively higher level in the "pyramid" is a lower

resolution image of the base image. At an appropriately re-

solved level blobs look like local spots, enabling immediate

interaction between the blob interior and the edges on all

sides. In the one-level processes a considerable number of

iterations are required in order for the parts of a large

blob to reinforce one another. In the pyramid structure, in-

formation passes up and down in the pyramid (inter-level inter-

actions and intra-level interactions) facilitating faster pro-

pagation of information.

To create the gray level pyramid, on which initial class

estimations are based, a base image is successively block

averaged (using a 4-pixel block size), creating the lower

resolution levels. Let LIL 2 ,'...,Ln be n levels in a pyramid

where Ln is a higher resolution level than Ln+l, and let PL
n

be a pixel on level n. In this structure PL is adjacent

to 13 pixels: a father in Ln+l, 8 brothers in L n, and 4 sons in

Ln-l PL n+l is the father of PL (and PL is the son of PLn+I
n2n0n n

1 20



21

if PLn was one of the 4 points averaged to compute PLn+ l 's

value. The 8 brothers are the 8 adjacent points of the

one-level process.

Probabilities are updated by the same method as in the

one level process, based on class interactions between adjacent

points, but with the information from the three interacting

levels weighted differently, i.e.

PL = aF + 8B + yS
n

where F is the father in L n+1

B H E P(i,j) the sum of the updated estimates of
i~ Lnj)

n the eight brothers

S E P (k,t)L ,the sum of the updated estimates of
kilt Ln- 1

the four sons

and a + 8 + y = 1.

Constrained by computer memory limitations, a three-level

pyramid (32x32, 16x16, 8x8) was created based on the image in

Figure 1; it is shown in Figure 14. The pixels were initially

classified light/dark by the process described in Chapter II

and displayed in Figure 15a by the same scheme. The compati-

bility coefficients were computed by mutual information.

Figure 15(b-i) shows eight iterations of the light/dark

pyramid process applied to Figure 15a with a = = = .33.

We would expect multi-level processes to be more informed than

single level processes, converging faster with more discriminative
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results; however this was not the case. The multi-level

process performed identically to the single-level process.

Based on the rationale that the sons are less informed than

their fathers, it seems reasonable that their evidence should

not be allowed to reduce the class estimation. Hence weights

of a = .25, 8 = .75, and y = 0. were used, but the results

were still the same.

Since this was just an initial step in the investigation

of pyramidal structures for relaxation, the default option

of computing compatibility coefficients by mutual information

was used. A more intelligent weighting scheme might have

produced better results. Other experiments are currently

being conducted with multi-level processes where the higher

levels determine the lower level compatibilities. Work on

lyramidal structures for object extraction will be continued

in the future, but is outside the scope of this thesis.
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3.2 Curvature

An additional information source investigated was the

use of curvature as a basis for initial estimation of "inside"

and "outside" class probabilities to augment the "light" and

"dark" classes in object interior/exterior interpretation.

Initially, most points have equal probability of being inside

or outside (assuming we do not know whether the blobs are light

and the background dark or vice versa), except that points ad-

jacent to an edge on the side away from the center of curvature

have higher probability of being outside while those points on

the side toward the center of curvature have higher probability

of being inside. These probabilities then reinforce one an-

other; inside reinforces inside and outside reinforces out-

side for neighboring pairs of points to the extent that they

are not separated by an edge. Initially, the probabilities

at a given point adjacent to the blob border will depend on

utether the border is convex or concave at that point. Even-

tually, the interior of the blob should be uniformly labeled

"inside" and the exterior labeled "outside" with high probabi-

lity. This method can be used to label the interior of a

closed curve even if it does not differ in gray level from the

exterior.

A hand drawn kidney bean shaped closed curve was used to

demonstrate the method; see Figure 16. The curve was chain-

coded and curvature at each point was measured by computing

- .
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two slope vectors four chain links in length, one on each

side of the point, normalizing each by its magnitude and

taking the dot product of the vectors [20]. Using four-

neighbor adjacency, those points adjacent to the edge which

were toward the center of curvature were labeled "inside",

and those points adjacent to the edge but away from the

center of curvature were labeled "outside". The probability

of belonging to each class was computed by normalizing the

curvature measure at the adjacent edge by the maximum curva-

ture value possible. If a point was adjacent to more than one

edge point, supporting curvature evidence (i.e., all adjacent

edge points were either convex or concave) increased class

probability in proportion to the evidence strength, while con-

tradictory curvature evidence (i.e., adjacent edge points

having convex and concave measurements) created an ambiguous

situation and inside/outside class probabilities were set equal.

Points not adjacent to an edge were also initially assigned

ambiguous, equal inside/outside probabilities. In this experi-

ment, the edge points are known so no fuzzy classification was

necessary. Edge points were assigned an edge probability of 1

and all other points assigned a 0 edge probability. Figure 17a

shows the initial pixel classifications with the class probabi-

lities rescaled as gray levels where g = 63 - PI'63 + .5 =

p0 *63 + .5. Initially most points are ambiguously classified

and appear gray.*

It should be pointed out that the high and low initial values
at the bottom of the concavity on the right side seem to be
reversed.
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The compatibility coefficients for the relaxation process

were determined a priori based on the constraints that inside

reinforces inside and outside reinforces outside; an inside/

outside label pair is contradictory, and classes separated

by an edge do not interact. They are displayed in Figure 18.

Figure 17(b-m) shows twelve iterations of relaxation

applied to Figure 17a. In this display schieme, as class sup-

port increases, the inside class goes to black, the outside

class goes to white, and the curve remains gray. As expected,

the ambiguity is resolved with the interior of the curve

classified "inside" and the exterior classified "outside".

The histograms of the iterations, Figure 19(a-m), show the

behavior of the process. Initially, nearly all points are

ambiguously classified and show up as a spike at the middle

of the histogram (at value 32). As the process iterates,

the spike separates with the inside class points migrating to

0 and the outside class points migrating to 63. The exterior

points beyond the outwardly propagating wavefront of "outside"

support and the curve points themselves remain ambiguously

classified. If the process were iterated further, the entire

exterior would be classified "outside" and the histogram would

then consist of three spikes: an "inside" class spike at 0,

an "outside" class spike at 63, and a small curve spike at 32.

Processes of this type might be used to model figure-ground

ambiguity, such as the Rubin vase, by initiating a propagation
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process at some particular sharply curved part of the boundary

between the two regions.

I

I

*1
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3.3 Sequences of Images

Detecting objects in a time sequence of images is another

domain where interacting relaxation processes may be useful.

Motion between frames produces a disparity between the

images. The disparity contains basic relational information

about the object which aids in object definition. Information

that might be difficult to extract or might even be lacking

in a single image may be available in a pair of images.

Joint relaxation processes can estimate the disparity or

velocity at each point concurrently with the estimation of

lightness/darkness and edgeness for object detection.

Presented here, for simplicity, is an example involving

a one-diwensional time varying sequence where velocity is

restricted to horizontal motion at unit velocity (i.e., a

moving waveform). We give a model for computing class com-

patibilities for each pair of adjacent points at each iteration

based on current class estimates involving the interactions

between the light/dark process and a motion direction process.

The model uses a neighborhood given by

ft- a b c

ft :d e f

ft+l: g h i

where ft is the frame at time t.
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Let M = {N,L,R} be the set of motion direction estimations

for no motion, left motion, and right motion respectively,

and let G = {fX,6} be the set of light/dark estimations. Adja-

cent class compatibilities are computed using the following

notation. Let

132= 1

2 1 [1

S3 =
[ab]

J2= [ a[i b b]

3 a b' b '

J3=[a: b:]b' b' a

whr a, b, aa b'

where a, b, a', b' are non-negative motion compatibilities

with the following relative weight meanings:

a compatible

b incompatible

a' highly compatible

b' highly incompatible

and I2' 13 are "no information" compatibility matrices.
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Let A ENS 2+ (+)

B E XA-II3 + 1IX')3

C E NJ 2 + (L+eR)12

D ERJ 2 + NS 2 + LI 2

E HNJ3 + (L+R)B

G ERJ 3 + LI 3 + NB

The formulas are used as shown in the following tables to

A compute the compatibility coefficients for the designated

* neighboring points.

e x 6 L R N

AI

L

R I B

N

Table 1

x 6 L R N

A
CI

LIE

RE

N

Table 2
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e a X 6 L R N

XD D I

6

L G

R

N

Table 3

where I denotes the "no information" coefficients.

The principle behind these computations is to base the

light/dark compatibility coefficients on the motion estimations

of the point, and base the motion compatibility coefficients

on the gray level similarity of the adjacent points. The co-

efficients calculated by these tables conform to the constraints

that points moving with similar motion reinforce each other

if they are both within the object or background, interior

reinforces interior, exterior reinforces exterior, and motion

from the object should not propagate to the background. Table

1 shows the intraframe computation. Table 2 shows the "no

motion" situation where point b in frame f t-l becomes point e

in ft" Table 3 shows the "right motion" case where point a

in frame ft-1 becomes point e in f The computations of

coefficients for the other adjacent points are based on these

three tables with the obvious symmetrical relations and appro-

priate direction substitutions.

i1
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CHAPTER IV

CONCLUSION

We have examined a fuzzy classification scheme for blob

detection which bases its classification updating on edge and

gray level information. We examined the processes operating

both independently and together. We also discussed extensions

to these processes and to the problem domain.

The edge relaxation process operating independently defined

the object after four iterations, but with some edges being

brought out of the background as the process continued. How-

ever, the results were an improvement over the non-probabilistic

edge detector results. Interacting with the light/dark infor-

mation resulted in further inhibition of the background edges

that did not surround a blob, and yielded complete blob defini-

tion in fewer iterations. The borderness scheme further im-

proved the results producing an almost perfect segmentation.

In the light/dark relaxation process operating independently

the blob interior grew into the background. Interaction with

the edge information substantially contained the interior

growth and produced an improved object/background discrimina-

tion. In the borderness scheme the object interior grew in-

wards filling the object and resulting in a further object/

background discrimination.

-!

[i _ i r ) z -_ ... , ' -J- .. .. .i L... .,.2..- mJ:..;. _ ~ ,
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Under the premise that multi-level processes have faster

information propagation and are more informed than single

level processes we tried relaxation on a pyramid structure

of successively resolved images. As this was the first stage

of experimentation, we tried the default option of computing

compatibility coefficients by mutual information. The results

were no improvement over the single level process. The next

step appears to be choosing more intelligent coefficients to

support the object information.

Using curvature to provide an initial estimate of inside/

outside probabilities produced an accurate classification on

our experimental curve. Now that we have verified its behavior,

this information source should be brought to interact with the

edge and gray level processes. The additional information

should produce a still sharper object/background discrimination.

We also formulated a parallel model for computing compati-

bility coefficients for blob detection in a time sequence of

images. We restricted motion to its simplest case, horizontal

unit motion in one dimension, to study the object position/

movement relations in successive frames. The model is untested

as yet because of the computational cost involved. As the

position/movement relations become better understood, they can

be generalized to less restricted domains.



33

All of the processes examined in this paper are parallel

processes. At present, the time requirements for these processes

limit their usefulness as real-time object detectors. However,

with the development of parallel processors the computational

cost involved should well be within the requirements of real-

time object detection.

I1

Ii

-- :.,-
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labtl~p] 3 , label[nbr] 3 labellp] : labeilnbr] :'q

3.449571 2.735268 2.989768 0.618779 1.834991 0,656950

13.303496 p 13.303496 0.094431 p 0. 600613

2.989768 2.735268 3.449571 0.137451 0.153977 0.163758

labelCp]: - labeltnbr3 : <- labelrp]: -. $ labelrbrJ] ,,'

0.069581 0.219511 0.164322 1.907638 4.107503 4.381657

0.002263 p 0.003521 8.935122 p 10.084600

0.030989 0.045222 0.031845 2. 596691 2.433852 2.016059

labelCp] :- labelCnbr3 :t labelEpl - labeltnbr]

1.036540 4.441962 3.797525 1.078657 0.947074 0.652277

1.751447 p 3.200273 0.200243 p 0.129268

0. 914150 1.432359 0.398709 0.025246 0.162744 0.088019

labelp] -- labelEnbr3 :-, labeltp3 • - label[nbrJ : NE

4. 106131 2.371873 1. 064473 0.868406 0.891125 0.875631

4.828966 p 3.729727 0.686561 p 0.674626

0. 525983 1.328874 1.809332 0.919590 0.954691 0.906917

labellp] : 4 labellnbr] :N

4.723255 2.132231 0.993537

12.241382 p 11.387216

2.307259 2.240219 3.518801

Fig. 4. Examples of compatibility coefficients light
for edge relaxation. The edge + is a drk

edge with the other edges rotations
of it.
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lab1e[p] :L&I3t label~nbr] - labellp] :D vk labelEnbr] i-.;

0.935456 0.979661 0.941326 0.98B469 0.994717 0.960597

0.814138 p 0.825806 1.709483 p 1.659618

0.638911 0.652284 0.641232 2.455052 2.620640 2.460205

labelEp3 :L ,1JabelCnbr] '3 ' labelEP3 04irk labeltnbr3 :t

0.932524 0.803443 0.607502 1.199085 1.884802 2.240233

0.947256 P 0.585945 1.237704 p 2.469181

0.900551 0.770539 0.580406 1.217793 1.898205 2.286948

labeltp3 :L9,1t labelCnbr] : label[p] :V)4,-k labelnbr]

0.886375 0.987558 1.002437 1. 119594 0.979270 0.820992

0.758947 p 0.920270 1.849878 p 1.320164

0.602609 0.700845 0.756032 2.487267 2.366656 1.997890

labelEp] Ls9hr label~nbr] :( labelp3 D:O k labellnbr3 I"

0.610647 0.699178 0.757497 2. 559976 2.421634 2.103482

0.719115 p 0.872555 2.120563 p 1.616848

0.748469 0.841446 0.855027 1.534926 1.373878 1.270607

labe1EpJ :Lkt labelZnbr] : If labelEp] :wrk labelCnbr] : N

0.943953 0.978146 0.945335 0. 880897 0.902736 0.877210

0.974432 p 0.975667 0.927173 p 0.924237

0.941775 0.975762 0.942862 0.901072 0.923959 0.897943

Fig. 9. Examples of compatibility coefficients
for joint relaxation.
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Inside Inside 6.0

Inside Outside 0.

Inside Edge .5

Outside Inside 0.

Outside Outside 6.0

Outside Edge .5

Edge Inside .5

Edge Outside .5

Edge Edge .5

Fig. 18. Compatibility coefficients
for inside/outside relaxation.

Ki

.4i

-Ir





Fig. 19 continued.
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Abstract (continued)

extension of cooperating relaxation processes to a time
sequence of images are also discussed.
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